Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Cell Host Microbe ; 32(5): 676-692.e5, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38640929

ABSTRACT

To spread within a host, intracellular Burkholderia form actin tails to generate membrane protrusions into neighboring host cells and use type VI secretion system-5 (T6SS-5) to induce cell-cell fusions. Here, we show that B. thailandensis also uses T6SS-5 to lyse protrusions to directly spread from cell to cell. Dynamin-2 recruitment to the membrane near a bacterium was followed by a short burst of T6SS-5 activity. This resulted in the polymerization of the actin of the newly invaded host cell and disruption of the protrusion membrane. Most protrusion lysis events were dependent on dynamin activity, caused no cell-cell fusion, and failed to be recognized by galectin-3. T6SS-5 inactivation decreased protrusion lysis but increased galectin-3, LC3, and LAMP1 accumulation in host cells. Our results indicate that B. thailandensis specifically activates T6SS-5 assembly in membrane protrusions to disrupt host cell membranes and spread without alerting cellular responses, such as autophagy.


Subject(s)
Burkholderia , Type VI Secretion Systems , Burkholderia/metabolism , Burkholderia/physiology , Type VI Secretion Systems/metabolism , Humans , Cell Membrane/metabolism , Lysosomal Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Actins/metabolism , Dynamin II/metabolism , Autophagy , Galectins/metabolism , Host-Pathogen Interactions , Cell Surface Extensions/metabolism , Animals , Microtubule-Associated Proteins , Lysosomal-Associated Membrane Protein 1
2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38547398

ABSTRACT

The hypervirulent lineages of Klebsiella pneumoniae (HvKp) cause invasive infections such as Klebsiella-liver abscess. Invasive infection often occurs after initial colonization of the host gastrointestinal tract by HvKp. Over 80% of HvKp isolates belong to the clonal group 23 sublineage I that has acquired genomic islands (GIs) GIE492 and ICEKp10. Our analysis of 12 361 K. pneumoniae genomes revealed that GIs GIE492 and ICEKp10 are co-associated with the CG23-I and CG10118 HvKp lineages. GIE492 and ICEKp10 enable HvKp to make a functional bacteriocin microcin E492 (mccE492) and the genotoxin colibactin, respectively. We discovered that GIE492 and ICEKp10 play cooperative roles and enhance gastrointestinal colonization by HvKp. Colibactin is the primary driver of this effect, modifying gut microbiome diversity. Our in vitro assays demonstrate that colibactin and mccE492 kill or inhibit a range of Gram-negative Klebsiella species and Escherichia coli strains, including Gram-positive bacteria, sometimes cooperatively. Moreover, mccE492 and colibactin kill human anaerobic gut commensals that are similar to the taxa found altered by colibactin in the mouse intestines. Our findings suggest that GIs GIE492 and ICEKp10 enable HvKp to kill several commensal bacterial taxa during interspecies interactions in the gut. Thus, acquisition of GIE492 and ICEKp10 could enable better carriage in host populations and explain the dominance of the CG23-I HvKp lineage.


Subject(s)
Genomic Islands , Klebsiella pneumoniae , Peptides , Polyketides , Animals , Mice , Humans , Virulence , Klebsiella pneumoniae/genetics , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology
3.
Biol Res ; 57(1): 7, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475927

ABSTRACT

BACKGROUND: The convergence of hypervirulence and carbapenem resistance in the bacterial pathogen Klebsiella pneumoniae represents a critical global health concern. Hypervirulent K. pneumoniae (hvKp) strains, frequently from sequence type 23 (ST23) and having a K1 capsule, have been associated with severe community-acquired invasive infections. Although hvKp were initially restricted to Southeast Asia and primarily antibiotic-sensitive, carbapenem-resistant hvKp infections are reported worldwide. Here, within the carbapenemase production Enterobacterales surveillance system headed by the Chilean Public Health Institute, we describe the isolation in Chile of a high-risk ST23 dual-carbapenemase-producing hvKp strain, which carbapenemase genes are encoded in a single conjugative plasmid. RESULTS: Phenotypic and molecular tests of this strain revealed an extensive resistance to at least 15 antibiotic classes and the production of KPC-2 and VIM-1 carbapenemases. Unexpectedly, this isolate lacked hypermucoviscosity, challenging this commonly used hvKp identification criteria. Complete genome sequencing and analysis confirmed the K1 capsular type, the KpVP-1 virulence plasmid, and the GIE492 and ICEKp10 genomic islands carrying virulence factors strongly associated with hvKp. Although this isolate belonged to the globally disseminated hvKp clonal group CG23-I, it is unique, as it formed a clade apart from a previously reported Chilean ST23 hvKp isolate and acquired an IncN KPC-2 plasmid highly disseminated in South America (absent in other hvKp genomes), but now including a class-I integron carrying blaVIM-1 and other resistance genes. Notably, this isolate was able to conjugate the double carbapenemase plasmid to an E. coli recipient, conferring resistance to 1st -5th generation cephalosporins (including combinations with beta-lactamase inhibitors), penicillins, monobactams, and carbapenems. CONCLUSIONS: We reported the isolation in Chile of high-risk carbapenem-resistant hvKp carrying a highly transmissible conjugative plasmid encoding KPC-2 and VIM-1 carbapenemases, conferring resistance to most beta-lactams. Furthermore, the lack of hypermucoviscosity argues against this trait as a reliable hvKp marker. These findings highlight the rapid evolution towards multi-drug resistance of hvKp in Chile and globally, as well as the importance of conjugative plasmids and other mobile genetic elements in this convergence. In this regard, genomic approaches provide valuable support to monitor and obtain essential information on these priority pathogens and mobile elements.


Subject(s)
Bacterial Proteins , Klebsiella Infections , Klebsiella pneumoniae , beta-Lactamases , Humans , Klebsiella pneumoniae/genetics , Chile , Escherichia coli , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Plasmids , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology
4.
ACS Infect Dis ; 10(2): 606-623, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38205780

ABSTRACT

The emergence of hypervirulent Klebsiella pneumoniae (hvKP) strains poses a significant threat to public health due to high mortality rates and propensity to cause severe community-acquired infections in healthy individuals. The ability to form biofilms and produce a protective capsule contributes to its enhanced virulence and is a significant challenge to effective antibiotic treatment. Polyphosphate kinase 1 (PPK1) is an enzyme responsible for inorganic polyphosphate synthesis and plays a vital role in regulating various physiological processes in bacteria. In this study, we investigated the impact of polyP metabolism on the biofilm and capsule formation and virulence traits in hvKP using Dictyostelium discoideum amoeba as a model host. We found that the PPK1 null mutant was impaired in biofilm and capsule formation and showed attenuated virulence in D. discoideum compared to the wild-type strain. We performed a proteomic analysis to gain further insights into the underlying molecular mechanism. The results revealed that the PPK1 mutant had a differential expression of proteins involved in capsule synthesis (Wzi-Ugd), biofilm formation (MrkC-D-H), synthesis of the colibactin genotoxin precursor (ClbB), as well as proteins associated with the synthesis and modification of lipid A (ArnB-LpxC-PagP). These proteomic findings corroborate the phenotypic observations and indicate that the PPK1 mutation is associated with impaired biofilm and capsule formation and attenuated virulence in hvKP. Overall, our study highlights the importance of polyP synthesis in regulating extracellular biomolecules and virulence in K. pneumoniae and provides insights into potential therapeutic targets for treating K. pneumoniae infections.


Subject(s)
Dictyostelium , Klebsiella pneumoniae , Humans , Virulence , Klebsiella pneumoniae/genetics , Polyphosphates , Proteomics , Biofilms
5.
Arq Bras Cardiol ; 120(10): e20220750, 2023 10.
Article in English, Portuguese | MEDLINE | ID: mdl-37909577

ABSTRACT

BACKGROUND: Dexmedetomidine (DEX), a specific α2-adrenergic receptor agonist, is protective against myocardial ischemia/reperfusion injury (MIRI). However, the association between DEX preconditioning-induced cardioprotection and mitophagy suppression remains unclear. OBJECTIVE: Hence, we aimed to investigate whether DEX preconditioning alleviates MIRI by suppressing mitophagy via α2-adrenergic receptor activation. METHOD: Sixty isolated rat hearts were treated with or without DEX before inducing ischemia and reperfusion; an α2-adrenergic receptor antagonist, yohimbine (YOH), was also administered before ischemia, alone or with DEX. The heart rate (HR), left ventricular diastolic pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximal and minimal rate of left ventricular pressure development (±dp/dtmax), and myocardial infarction size were measured. The mitochondrial ultrastructure and autophagosomes were assessed using transmission electron microscopy. Mitochondrial membrane potential and reactive oxygen species (ROS) levels were measured using JC-1 and dichloride hydrofluorescein diacetate assays, respectively. The expression levels of the mitophagy-associated proteins Beclin1, LC3II/I ratio, p62, PINK1, and Parkin were detected by western blotting. RESULTS: Compared with the control group, in the ischemia/reperfusion group, the HR, LVDP, and ±dp/dtmax were remarkably decreased (p< 0.05), whereas LVEDP and infarct sizes were significantly increased (p< 0.05). DEX preconditioning significantly improved cardiac dysfunction reduced myocardial infarction size, maintained mitochondrial structural integrity, increased mitochondrial membrane potential, inhibited autophagosomes formation, and decreased ROS production and Beclin1, LC3II/I ratio, PINK1, Parkin, and p62 expression(p< 0.05). When DEX and YOH were combined, YOH canceled the effect of DEX, whereas the use of YOH alone had no effect. CONCLUSION: Therefore, DEX preconditioning was cardioprotective against MIRI in rats by suppressing mitophagy via α2-adrenergic receptor activation.


FUNDAMENTO: A dexmedetomidina (DEX), um agonista específico do receptor α2-adrenérgico, é protetora contra lesão de isquemia/reperfusão miocárdica (I/R). No entanto, a associação entre a cardioproteção induzida pelo pré-condicionamento DEX e a supressão da mitofagia permanece pouco clara. OBJETIVO: Portanto, nosso objetivo foi investigar se o pré-condicionamento com DEX alivia a I/R, suprimindo a mitofagia via ativação do receptor α2-adrenérgico. MÉTODO: Sessenta corações de ratos isolados foram tratados com ou sem DEX antes de induzir isquemia e reperfusão; um antagonista do receptor α2-adrenérgico, a ioimbina (YOH), também foi administrado antes da isquemia, isoladamente ou com DEX. A frequência cardíaca (FC), pressão diastólica do ventrículo esquerdo (PDVE), pressão diastólica final do ventrículo esquerdo (PDFVE), taxa máxima e mínima de desenvolvimento da pressão ventricular esquerda (±dp/dtmax) e tamanho do infarto do miocárdio foram medidos. A ultraestrutura mitocondrial e as autofagossomas foram avaliadas por microscopia eletrônica de transmissão. O potencial de membrana mitocondrial e os níveis de espécies reativas de oxigênio (ROS) foram medidos usando os ensaios JC-1 e diacetato de diclorodi hidrofluoresceína, respectivamente. Os níveis de expressão das proteínas associadas à mitofagia Beclin1, relação LC3II/I, p62, PINK1 e Parkin foram detectados por western blotting. RESULTADOS: Em comparação com o grupo controle, no grupo isquemia/reperfusão, a FC, PDVE e ±dp/dtmax foram notavelmente diminuídas (p<0,05), enquanto os tamanhos da PDFVE e do infarto aumentaram significativamente (p<0,05). O pré-condicionamento com DEX melhorou significativamente a disfunção cardíaca, reduziu o tamanho do infarto do miocárdio, manteve a integridade estrutural mitocondrial, aumentou o potencial de membrana mitocondrial, inibiu a formação de autofagossomas e diminuiu a produção de ROS e a relação Beclin1, relação LC3II/I, expressão PINK1, Parkin e p62(p<0,05). Quando DEX e YOH foram combinados, o YOH cancelou o efeito da DEX, enquanto o uso de YOH sozinha não teve efeito. CONCLUSÃO: Portanto, o pré-condicionamento DEX foi cardioprotetor contra I/R em ratos, suprimindo a mitofagia por meio da ativação do receptor α2-adrenérgico.


Subject(s)
Dexmedetomidine , Myocardial Infarction , Myocardial Reperfusion Injury , Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Beclin-1 , Mitophagy , Myocardial Infarction/drug therapy , Myocardial Infarction/prevention & control , Protein Kinases/metabolism , Ubiquitin-Protein Ligases , Receptors, Adrenergic
6.
J Antimicrob Chemother ; 78(10): 2581-2590, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37671807

ABSTRACT

OBJECTIVES: The rise of MDR Gram-negative bacteria (GNB), especially those resistant to last-resort drugs such as carbapenems and colistin, is a global health risk and calls for increased efforts to discover new antimicrobial compounds. We previously reported that polyimidazolium (PIM) compounds exhibited significant antimicrobial activity and minimal mammalian cytotoxicity. However, their mechanism of action is relatively unknown. We examined the efficacy and mechanism of action of a hydrophilic PIM (PIM5) against colistin- and meropenem-resistant clinical isolates. METHODS: MIC and time-kill testing was performed for drug-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. N-phenyl-1-naphthylamine and propidium iodide dyes were employed to determine membrane permeabilization. Spontaneous resistant mutants and single deletion mutants were generated to understand potential resistance mechanisms to the drug. RESULTS: PIM5 had the same effectiveness against colistin- and meropenem-resistant strains as susceptible strains of GNB. PIM5 exhibited a rapid bactericidal effect independent of bacterial growth phase and was especially effective in water. The polymer disrupts both the outer and cytoplasmic membranes. PIM5 binds and intercalates into bacterial genomic DNA upon entry of cells. GNB do not develop high resistance to PIM5. However, the susceptibility and uptake of the polymer is moderately affected by mutations in the two-component histidine kinase sensor BaeS. PIM5 has negligible cytotoxicity on human cells at bacterial-killing concentrations, comparable to the commercial antibiotics polymyxin B and colistin. CONCLUSIONS: PIM5 is a potent broad-spectrum antibiotic targeting GNB resistant to last-resort antibiotics.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Humans , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Meropenem/pharmacology , Gram-Negative Bacteria , Anti-Infective Agents/pharmacology , Escherichia coli/genetics , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial , Mammals
7.
mBio ; 14(4): e0129723, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37530523

ABSTRACT

Hypervirulent Klebsiella pneumoniae causes liver abscess and potentially devastating metastatic complications. The majority of Klebsiella-induced liver abscess are caused by the CG23-I sublineage of hypervirulent Klebsiella pneumoniae. This and some other lineages possess a >200-kb virulence plasmid. We discovered a novel protein IroP nestled in the virulence plasmid-encoded salmochelin operon that cross-regulates and suppresses the promoter activity of chromosomal type 3 fimbriae (T3F) gene transcription. IroP is itself repressed by iron through the ferric uptake regulator. Iron-rich conditions increase T3F and suppress capsule mucoviscosity, leading to biofilm formation and cell adhesion. Conversely, iron-poor conditions cause a transcriptional switch to hypermucoid capsule production and T3F repression. The likely acquisition of iroP on mobile genetic elements and successful adaptive integration into the genetic circuitry of a major lineage of hypervirulent K. pneumoniae reveal a powerful example of plasmid chromosomal cross talk that confers an evolutionary advantage. Our discovery also addresses the conundrum of how the hypermucoid capsule that impedes adhesion could be regulated to facilitate biofilm formation and colonization. The acquired ability of the bacteria to alternate between a state favoring dissemination and one that favors colonization in response to iron availability through transcriptional regulation offers novel insights into the evolutionary success of this pathogen. IMPORTANCE Hypervirulent Klebsiella pneumoniae contributes to the majority of monomicrobial-induced liver abscess infections that can lead to several other metastatic complications. The large virulence plasmid is highly stable in major lineages, suggesting that it provides survival benefits. We discovered a protein IroP encoded on the virulence plasmid that suppresses expression of the type 3 fimbriae. IroP itself is regulated by iron, and we showed that iron regulates hypermucoid capsule production while inversely regulating type 3 fimbriae expression through IroP. The acquisition and integration of this inverse transcriptional switch between fimbriae and capsule mucoviscosity shows an evolved sophisticated plasmid-chromosomal cross talk that changes the behavior of hypervirulent K. pneumoniae in response to a key nutrient that could contribute to the evolutionary success of this pathogen.

8.
Plant Physiol Biochem ; 201: 107883, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37442049

ABSTRACT

Chenopodium ambrosioides is a manganese (Mn) hyperaccumulator that can be used for Mn-polluted soil phytoremediation. However, the mechanism of Mn tolerance of C. ambrosioides remains largely unknown. In this study, the key factors for Mn tolerance of C. ambrosioides was investigated from the aspects of DNA methylation pattern, gene expression regulation and physiological function. We found that the two genotypes of C. ambrosioides populations have differentiated tolerance to Mn stress (Mn-tolerant: CS and XC, Mn-sensitive: WH). Although there was no difference in Mn accumulation between two types under excess Mn, the biomass and photosynthetic systems were more severely inhibited in Mn-sensitive type, as well as suffering more serious oxidative damage. More differentially expressed genes (DEGs) were downregulated in the Mn-tolerant type, indicating that the Mn-tolerant type tends to inhibit gene expression to cope with Mn stress. DEGs related to metal transport, antioxidant system, phytohormone and transcription factors contribute to the tolerance of C. ambrosioides to Mn, and account for difference in Mn stress sensitivities between the Mn-sensitive and tolerant types. We also found that DNA methylation variation may help to cope with Mn stress. The global DNA methylation level in C. ambrosioides increased under Mn stress, especially in the Mn-sensitive type. Dozens of methylated loci were significantly associated with the Mn accumulation trait of C. ambrosioides, and some critical DEGs were regulated by DNA methylation. Our study comprehensively demonstrated the Mn tolerance mechanism of C. ambrosioides for the first time, and highlighted the roles of epigenetic modification in C. ambrosioides response to Mn stress. Our findings may contribute to elucidating the adaptation mechanism of hyperaccumulator to the heavy metal toxicity.


Subject(s)
Chenopodium ambrosioides , Manganese , Manganese/toxicity , Manganese/metabolism , Transcriptome/genetics , Epigenomics , Antioxidants/metabolism
9.
Chemosphere ; 338: 139487, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37478983

ABSTRACT

With the widespread use of biochar for soil remediation and improvement, its effects on soil organisms are receiving increased attention. The impacts of biochar on earthworms are still poorly understood. This study aimed to assess the potential ecotoxicity of rice husk biochar (RB) and sludge biochar (SB) on earthworms during potentially toxic elements (PTEs) contaminated soil remediation. The results showed that high rates of RB addition (5% and 10%) caused earthworm mortality, but SB addition did not affect earthworm survival. When added at non-lethal rates (3%), RB and SB addition did not affect survival, weight loss, and PTEs accumulation of earthworms, while resulting in apparent avoidance behavior and oxidative stress response. Among them, RB addition was more likely to cause avoidance behavior, while SB addition had a more pronounced stress effect on earthworms. Additionally, the bacterial communities in the earthworm gut were more sensitive to biochar addition than those in soil. SB addition had a greater impact on earthworm gut bacterial communities than RB addition. The addition of RB and SB increased the abundance of Bacillaceae while decreasing the abundance of Rhizobiaceae in the earthworm gut. This change in the composition of bacterial community may impact the nitrogen cycle and organic matter degradation functions of earthworms. The study suggests that RB and SB may have different effects on earthworms during PTEs-contaminated soil remediation, depending on their properties. It will assist us to understand the potential ecotoxicity of biochar and provide several guidance for its safe application.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Soil , Soil Pollutants/analysis , Charcoal/pharmacology
10.
Chemosphere ; 334: 138857, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37187383

ABSTRACT

The root tips of host plant species can establish ectomycorrhizae with their fungal partners, thereby altering the responses of the host plants to heavy metal (HM) toxicity. Here, two species of Laccaria, L. bicolor and L. japonica, were investigated in symbiosis with Pinus densiflora to study their potential for promotion of phytoremediation of HM-contaminated soils in pot experiments. The results showed that L. japonica had significantly higher dry biomass than L. bicolor in mycelia grown on modified Melin-Norkrans medium containing elevated levels of cadmium (Cd) or copper (Cu). Meanwhile, the accumulations of Cd or Cu in L. bicolor mycelia were much higher than that in L. japonica at the same level of Cd or Cu. Therefore, L. japonica displayed a stronger tolerance to HM toxicity than L. bicolor in situ. Compared with non-mycorrhizal P. densiflora seedlings, inoculation with two Laccaria species significantly increased the growth of P. densiflora seedlings in absence or presence of HM. The mantle of host roots blocked the uptake and migration of HM, which led to the decrease of Cd and Cu accumulation in the P. densiflora shoots and roots, except for the root Cd accumulation of L. bicolor-mycorrhizal plants when 25 mg kg-1 Cd exposure. Furthermore, HM distribution in mycelia showed Cd and Cu are mainly retained in the cell walls of mycelia. These results provide strong evidence that the two species of Laccaria in this system may have different strategies to assist host tree against HM toxicity.


Subject(s)
Laccaria , Mycorrhizae , Pinus , Mycorrhizae/physiology , Cadmium/toxicity , Laccaria/physiology , Copper/toxicity , Plant Roots/microbiology
11.
Front Plant Sci ; 14: 1138281, 2023.
Article in English | MEDLINE | ID: mdl-36959934

ABSTRACT

Microplastics (MPs) and heavy metals (HMs) co-exist in sweet potato fields of China. As the main component of agricultural field mulch and one of the most polluting and harmful HMs, the effects of polyethylene microplastics (PE MPs) and cadmium (Cd) on sweet potato and soil environment are remains unclear. Here, pot and hydroponic experiments are used to explore the effects of original and weathered PE MPs on growth and Cd uptake of sweet potatoes. The results of pot experiments reveal that compared with the control (0%), 5% of weathered PE MPs can significantly increase soil electrical conductivity (EC); both 5% of the original PE MPs and weathered PE MPs can significantly reduce the concentration of Olsen phosphorus (P) and Olsen potassium (K) in soil, inhibit plant growth, but significantly increase Cd accumulation and glutathione (GSH) level in tissues of sweet potatoes, and also induce membrane lipid peroxidation. In addition, compared to 5% weathered PE MPs, 5% original PE MPs significantly reduce soil EC, growth and peroxidase level of sweet potatoes, but significantly increase Cd concentration in leaves and stems. The results of hydroponic experiment show that original PE MPs significantly increase the P, K, and Cd adsorption compared with weathered PE MPs, and Cd increases the original PE MPs accumulation in the root cortex but decrease PE MPs accumulation in shoots. To sum up, our study investigates the differences and reasons of the effects of original and weathered PE MPs on growth and Cd absorption of sweet potatoes.

12.
Chemosphere ; 321: 138141, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36804251

ABSTRACT

Numerous researches have been conducted on the effects of biotic and abiotic-induced aging on the physicochemical characteristics and functions of biochar; however, the impacts of earthworm-induced aging on biochar have not been reported. Hence, we conducted a microscopic experiment simulating a 'drilosphere' to explore the influence of earthworm activity on the natural aging of rice husk biochar (RHBC) through the difference in biochar characteristics after aging in drilosphere and non-drilosphere. The earthworm activity increases the available nitrogen (AN) and dissolved organic matter (DOM) contents of aged RHBC and changes its composition. The increase of DOM and AN content may recruit more microorganisms to colonize biochar and accelerate the biological oxidation of biochar. Furthermore, earthworm activity significantly increased the contents of oxygen (O) and O-containing functional groups in the aged RHBC and decreased the stability (aromaticity) of the aged RHBC, suggesting that the earthworm activity accelerates the natural aging of biochar. Earthworm feeding promotes physical damage to biochar. Besides, the earthworm activity decreased the pH, hydrophilicity and specific surface area (SSA) of aged RHBC but enhanced the adsorption capacity of aged RHBC for heavy metals. The higher content of O-containing functional groups on the surface of drilosphere-aged RHBC was the main reason for its higher adsorption performance. Earthworm feeding promotes physical damage to biochar. These results indicate that earthworm activity can accelerate the natural aging of biochar and alter its physicochemical characteristics and functions. This study illustrates how biochar characteristics change in earthworm-soil systems, which will help scientifically evaluate the long-term effectiveness of biochar.


Subject(s)
Oligochaeta , Oryza , Soil Pollutants , Animals , Charcoal/chemistry , Soil/chemistry , Adsorption , Oryza/chemistry , Soil Pollutants/analysis , Nitrogen
13.
Environ Pollut ; 322: 121219, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36746291

ABSTRACT

Earthworms and biochar tend to have opposite effects on heavy metal bioavailability in soil. However, the influence and controlling process of earthworms on the immobilisation effect of biochar remain poorly understood. Through the co-cultivation of earthworms with rice-husk biochar and sludge biochar in heavy metal-contaminated soil and desorption experiments involving simulated earthworm gut, we explored the factors that earthworms influence the heavy metal immobilisation ability of biochar. Our results showed that rice-husk biochar and sludge biochar effectively immobilized heavy metals in soil, whereas earthworm activity mobilised heavy metals in biochar-treated soil, which weakens the immobilisation of biochar. The soil pH reduction effect of earthworms by increasing the abundance of soil ammonia-oxidising bacteria to promote soil nitrification is an important mechanism through which earthworms mobilise heavy metals; however, this process did not occur within 10 days of incubation. Nitrification inhibitors effectively inhibit the mobilisation of heavy metals in soil by earthworms. In addition, the bioavailability of heavy metals in earthworm casts was significantly higher than those in the surrounding soil and earthworm-free soil. Moreover, simulated earthworm gut fluid promoted the re-release of heavy metals from the soil and biochar particles. These results suggest that the gut digestion of earthworms is another important mechanism by which earthworms mobilise soil heavy metals and weaken the immobilisation of biochar. Therefore, earthworms weakened the immobilisation effect of biochar mainly by promoting nitrification to reduce soil pH and through gut digestion.


Subject(s)
Metals, Heavy , Oligochaeta , Oryza , Soil Pollutants , Animals , Sewage , Nitrification , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal , Soil
15.
J Hazard Mater ; 441: 129904, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36096061

ABSTRACT

As an important subtopic within phytoremediation, hyperaccumulators have garnered significant attention due to their ability of super-enriching heavy metals. Identifying the factors that affecting phytoextraction efficiency has important application value in guiding the efficient remediation of heavy metal contaminated soil. However, it is challenging to identify the critical factors that affect the phytoextraction of heavy metals in soil-hyperaccumulator ecosystems because the current projections on phytoremediation extrapolations are rudimentary at best using simple linear models. Here, machine learning (ML) approaches were used to predict the important factors that affecting phytoextraction efficiency of hyperaccumulators. ML analysis was based on 173 data points with consideration of soil properties, experimental conditions, plant families, low-molecular-weight organic acids from plants, plant genes, and heavy metal properties. Heavy metal properties, especially the metal ion radius, were the most important factors that affect heavy metal accumulation in shoots, and the plant family was the most important factor that affect the bioconcentration factor, metal extraction ratio, and remediation time. Furthermore, the Crassulaceae family had the highest potential as hyperaccumulators for phytoremediation, which was related to the expression of genes encoding heavy metal transporting ATPase (HMA), Metallothioneins (MTL), and natural resistance associated macrophage protein (NRAMP), and also the secretion of malate and threonine. New insights into the effects of plant characteristics, experimental conditions, soil characteristics, and heavy metal properties on phytoextraction efficiency from ML model interpretation could guide the efficient phytoremediation by identifying the best hyperaccumulators and resolving its efficient remediation mechanisms.


Subject(s)
Metals, Heavy , Soil Pollutants , Adenosine Triphosphatases/metabolism , Biodegradation, Environmental , Ecosystem , Machine Learning , Malates/metabolism , Metals, Heavy/analysis , Plants/metabolism , Soil , Soil Pollutants/metabolism , Threonine/metabolism
16.
Arq. bras. cardiol ; 120(10): e20220750, 2023. graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1520127

ABSTRACT

Resumo Fundamento A dexmedetomidina (DEX), um agonista específico do receptor α2-adrenérgico, é protetora contra lesão de isquemia/reperfusão miocárdica (I/R). No entanto, a associação entre a cardioproteção induzida pelo pré-condicionamento DEX e a supressão da mitofagia permanece pouco clara. Objetivo Portanto, nosso objetivo foi investigar se o pré-condicionamento com DEX alivia a I/R, suprimindo a mitofagia via ativação do receptor α2-adrenérgico. Método Sessenta corações de ratos isolados foram tratados com ou sem DEX antes de induzir isquemia e reperfusão; um antagonista do receptor α2-adrenérgico, a ioimbina (YOH), também foi administrado antes da isquemia, isoladamente ou com DEX. A frequência cardíaca (FC), pressão diastólica do ventrículo esquerdo (PDVE), pressão diastólica final do ventrículo esquerdo (PDFVE), taxa máxima e mínima de desenvolvimento da pressão ventricular esquerda (±dp/dtmax) e tamanho do infarto do miocárdio foram medidos. A ultraestrutura mitocondrial e as autofagossomas foram avaliadas por microscopia eletrônica de transmissão. O potencial de membrana mitocondrial e os níveis de espécies reativas de oxigênio (ROS) foram medidos usando os ensaios JC-1 e diacetato de diclorodi hidrofluoresceína, respectivamente. Os níveis de expressão das proteínas associadas à mitofagia Beclin1, relação LC3II/I, p62, PINK1 e Parkin foram detectados por western blotting. Resultados Em comparação com o grupo controle, no grupo isquemia/reperfusão, a FC, PDVE e ±dp/dtmax foram notavelmente diminuídas (p<0,05), enquanto os tamanhos da PDFVE e do infarto aumentaram significativamente (p<0,05). O pré-condicionamento com DEX melhorou significativamente a disfunção cardíaca, reduziu o tamanho do infarto do miocárdio, manteve a integridade estrutural mitocondrial, aumentou o potencial de membrana mitocondrial, inibiu a formação de autofagossomas e diminuiu a produção de ROS e a relação Beclin1, relação LC3II/I, expressão PINK1, Parkin e p62(p<0,05). Quando DEX e YOH foram combinados, o YOH cancelou o efeito da DEX, enquanto o uso de YOH sozinha não teve efeito. Conclusão Portanto, o pré-condicionamento DEX foi cardioprotetor contra I/R em ratos, suprimindo a mitofagia por meio da ativação do receptor α2-adrenérgico.


Abstract Background Dexmedetomidine (DEX), a specific α2-adrenergic receptor agonist, is protective against myocardial ischemia/reperfusion injury (MIRI). However, the association between DEX preconditioning-induced cardioprotection and mitophagy suppression remains unclear. Objective Hence, we aimed to investigate whether DEX preconditioning alleviates MIRI by suppressing mitophagy via α2-adrenergic receptor activation. Method Sixty isolated rat hearts were treated with or without DEX before inducing ischemia and reperfusion; an α2-adrenergic receptor antagonist, yohimbine (YOH), was also administered before ischemia, alone or with DEX. The heart rate (HR), left ventricular diastolic pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximal and minimal rate of left ventricular pressure development (±dp/dtmax), and myocardial infarction size were measured. The mitochondrial ultrastructure and autophagosomes were assessed using transmission electron microscopy. Mitochondrial membrane potential and reactive oxygen species (ROS) levels were measured using JC-1 and dichloride hydrofluorescein diacetate assays, respectively. The expression levels of the mitophagy-associated proteins Beclin1, LC3II/I ratio, p62, PINK1, and Parkin were detected by western blotting. Results Compared with the control group, in the ischemia/reperfusion group, the HR, LVDP, and ±dp/dtmax were remarkably decreased (p< 0.05), whereas LVEDP and infarct sizes were significantly increased (p< 0.05). DEX preconditioning significantly improved cardiac dysfunction reduced myocardial infarction size, maintained mitochondrial structural integrity, increased mitochondrial membrane potential, inhibited autophagosomes formation, and decreased ROS production and Beclin1, LC3II/I ratio, PINK1, Parkin, and p62 expression(p< 0.05). When DEX and YOH were combined, YOH canceled the effect of DEX, whereas the use of YOH alone had no effect. Conclusion Therefore, DEX preconditioning was cardioprotective against MIRI in rats by suppressing mitophagy via α2-adrenergic receptor activation.

17.
Ann Bot ; 130(7): 1041-1056, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36413156

ABSTRACT

BACKGROUND AND AIMS: Invasive plants often colonize wide-ranging geographical areas with various local microenvironments. The specific roles of epigenetic and genetic variation during such expansion are still unclear. Chenopodium ambrosioides is a well-known invasive alien species in China that can thrive in metalliferous habitats. This study aims to comprehensively understand the effects of genetic and epigenetic variation on the successful invasion of C. ambrosioides. METHODS: We sampled 367 individuals from 21 heavy metal-contaminated and uncontaminated sites with a wide geographical distribution in regions of China. We obtained environmental factors of these sampling sites, including 13 meteorological factors and the contents of four heavy metals in soils. Microsatellite markers were used to investigate the demographic history of C. ambrosioides populations in China. We also analysed the effect of epigenetic variation on metalliferous microhabitat adaptation using methylation-sensitive amplified polymorphism (MSAP) markers. A common garden experiment was conducted to compare heritable phenotypic variations among populations. KEY RESULTS: Two distinct genetic clusters that diverged thousands of years ago were identified, suggesting that the eastern and south-western C. ambrosioides populations in China may have originated from independent introduction events without recombination. Genetic variation was shown to be a dominant determinant of phenotypic differentiation relative to epigenetic variation, and further affected the geographical distribution pattern of invasive C. ambrosioides. The global DNA unmethylation level was reduced in metalliferous habitats. Dozens of methylated loci were significantly associated with the heavy metal accumulation trait of C. ambrosioides and may contribute to coping with metalliferous microenvironments. CONCLUSIONS: Our study of C. ambrosioides highlighted the dominant roles of genetic variation in large geographical range expansion and epigenetic variation in local metalliferous habitat adaptation.


Subject(s)
Chenopodium ambrosioides , Amplified Fragment Length Polymorphism Analysis , Ecosystem , Introduced Species , Epigenesis, Genetic , Genetic Variation
18.
Front Surg ; 9: 989408, 2022.
Article in English | MEDLINE | ID: mdl-36157416

ABSTRACT

Background: The counts of examined lymph nodes (ELNs) in predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC) is a controversial issue. We conducted a retrospective study to develop an ELNs-based model to individualize ESCC prognosis. Methods: Patients with ESCC from the SEER database and our center were strictly screened. The optimal threshold value was determine by the X-tile software. A prognostic model for ESCC patients was developed and validated with R. The model's efficacy was evaluated by C-index, ROC curve, and decision curve analysis (DCA). Results: 3,629 cases and 286 cases were screened from the SEER database and our center, respectively. The optimal cut-off value of ELNs was 10. Based on this, we constructed a model with a favorable C-index (training group: 0.708; external group 1: 0.687; external group 2: 0.652). The model performance evaluated with ROC curve is still reliable among the groups. 1-year AUC for nomogram in three groups (i.e., 0.753, 0.761, and 0.686) were superior to that of the TNM stage (P < 0.05). Similarly, the 3-year AUC and the 5-year AUC results for the model were also higher than that of the 8th TNM stage. By contrast, DCA showed the benefit of this model was better in the same follow-up period. Conclusion: More than 10 ELNs are helpful to evaluate the survival of ESCC patients. Based on this, an improved model for predicting the prognosis of ESCC patients was proposed.

19.
J Fungi (Basel) ; 8(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35887447

ABSTRACT

Aspergillus includes both plant pathogenic and beneficial fungi. Although endophytes beneficial to plants have high potential for plant growth promotion and improving stress tolerance, studies on endophytic lifestyles and endophyte-plant interactions are still limited. Here, three endophytes belonging to Aspergillus, AS31, AS33, and AS42, were isolated. They could successfully colonize rice roots and significantly improved rice growth. The genomes of strains AS31, AS33, and AS42 were sequenced and compared with other Aspergillus species covering both pathogens and endophytes. The genomes of AS31, AS33, and AS42 were 36.8, 34.8, and 35.3 Mb, respectively. The endophytic genomes had more genes encoding carbohydrate-active enzymes (CAZymes) and small secreted proteins (SSPs) and secondary metabolism gene clusters involved in indole metabolism than the pathogens. In addition, these endophytes were able to improve Pi (phosphorus) accumulation and transport in rice by inducing the expression of Pi transport genes in rice. Specifically, inoculation with endophytes significantly increased Pi contents in roots at the early stage, while the Pi contents in inoculated shoots were significantly increased at the late stage. Our results not only provide important insights into endophyte-plant interactions but also provide strain and genome resources, paving the way for the agricultural application of Aspergillus endophytes.

20.
J Fungi (Basel) ; 8(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35887479

ABSTRACT

Cadmium (Cd) displays strong toxicity, high mobility, and cannot be degraded, which poses a serious threat to the environment. Cenococcum geophilum (C. geophilum) is one of the most common ectomycorrhizal fungi (ECMF) in the natural environment. In this study, three Cd sensitive and three Cd tolerant strains of C. geophilum were used to analyze the physiological and molecular responses to Cd exposure. The results showed that Cd inhibited the growth of all strains of C. geophilum but had a less toxic effect on the tolerant strains, which may be correlated to a lower content of Cd and higher activity of antioxidant enzymes in the mycelia of tolerant strains. Comparative transcriptomic analysis was used to identify differentially expressed genes (DEGs) of four selected C. geophilum strains after 2 mg/L Cd treatment. The results showed that the defense response of C. geophilum strain to Cd may be closely related to the differential expression of functional genes involved in cell membrane ion transport, macromolecular compound metabolism, and redox pathways. The results were further confirmed by RT-qPCR analysis. Collectively, this study provides useful information for elucidation of the Cd tolerance mechanism of ECMF.

SELECTION OF CITATIONS
SEARCH DETAIL
...